skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thompson, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wildfires, which are a natural part of the boreal ecosystem in Alaska, have recently increased in frequency and size. Environmental conditions (high temperature, low precipitation, and frequent lightning events) are becoming favorable for severe fire events. Fire releases greenhouse gasses such as carbon dioxide into the environment, creating a positive feedback loop for warming. Needleleaf species are the dominant vegetation in boreal Alaska and are highly flammable. They burn much faster due to the presence of resin, and their low-lying canopy structure facilitates the spread of fire from the ground to the canopy. Knowing the needleleaf vegetation distribution is crucial for better forest and wildfire management practices. Our study focuses on needleleaf fraction mapping using a well-documented spectral unmixing approach: multiple endmember spectral mixture analysis (MESMA). We used an AVIRIS-NG image (5 m), upscaled it to 10 m and 30 m spatial resolutions, and applied MESMA to all three images to assess the impact of spatial resolution on sub-pixel needleleaf fraction estimates. We tested a novel method to validate the fraction maps using field data and a high-resolution classified hyperspectral image. Our validation method produced needleleaf cover fraction estimates with accuracies of 73%, 79%, and 78% for 5 m, 10 m, and 30 m image data, respectively. To determine whether these accuracies varied significantly across different spatial scales, we used the McNemar statistical test and found no significant differences between the accuracies. The findings of this study enhance the toolset available to fire managers to manage wildfire and for understanding changes in forest demography in the boreal region of Alaska across the high-to-moderate resolution scale. 
    more » « less
  2. Imaging spectroscopy is a burgeoning tool for understanding ecosystem functioning on large spatial scales, yet the application of this technology to assess intra-specific trait variation across environmental gradients has been poorly tested. Selection of specific genotypes via environmental filtering plays an important role in driving trait variation and thus functional diversity across space and time, but the relative contributions of intra-specific trait variation and species turnover are still unclear. To address this issue, we quantified the variation in reflectance spectra within and between six uniform stands of Metrosideros polymorpha across elevation and soil substrate age gradients on Hawai‘i Island. Airborne imaging spectroscopy and light detection and ranging (LiDAR) data were merged to capture and isolate sunlit portions of canopies at the six M. polymorpha-dominated sites. Both intra-site and inter-site spectral variations were quantified using several analyses. A support vector machine (SVM) model revealed that each site was spectrally distinct, while Euclidean distances between site centroids in principal components (PC) space indicated that elevation and soil substrate age drive the separation of canopy spectra between sites. Coefficients of variation among spectra, as well as the intrinsic spectral dimensionality of the data, demonstrated the hierarchical effect of soil substrate age, followed by elevation, in determining intra-site variation. Assessments based on leaf trait data estimated from canopy reflectance resulted in similar patterns of separation among sites in the PC space and distinction among sites in the SVM model. Using a highly polymorphic species, we demonstrated that canopy reflectance follows known ecological principles of community turnover and thus how spectral remote sensing addresses forest community assembly on large spatial scales. 
    more » « less
  3. In 1967, scientists used a simple climate model to predict that human-caused increases in atmospheric CO 2 should warm Earth’s troposphere and cool the stratosphere. This important signature of anthropogenic climate change has been documented in weather balloon and satellite temperature measurements extending from near-surface to the lower stratosphere. Stratospheric cooling has also been confirmed in the mid to upper stratosphere, a layer extending from roughly 25 to 50 km above the Earth’s surface (S 25 − 50 ). To date, however, S 25 − 50 temperatures have not been used in pattern-based attribution studies of anthropogenic climate change. Here, we perform such a “fingerprint” study with satellite-derived patterns of temperature change that extend from the lower troposphere to the upper stratosphere. Including S 25 − 50 information increases signal-to-noise ratios by a factor of five, markedly enhancing fingerprint detectability. Key features of this global-scale human fingerprint include stratospheric cooling and tropospheric warming at all latitudes, with stratospheric cooling amplifying with height. In contrast, the dominant modes of internal variability in S 25 − 50 have smaller-scale temperature changes and lack uniform sign. These pronounced spatial differences between S 25 − 50 signal and noise patterns are accompanied by large cooling of S 25 − 50 (1 to 2 ° C over 1986 to 2022) and low S 25 − 50 noise levels. Our results explain why extending “vertical fingerprinting” to the mid to upper stratosphere yields incontrovertible evidence of human effects on the thermal structure of Earth’s atmosphere. 
    more » « less
  4. Heart rate variability (HRV) features support several clinical applications, including sleep staging, and ballistocardiograms (BCGs) can be used to unobtrusively estimate these features. Electrocardiography is the traditional clinical standard for HRV estimation, but BCGs and electrocardiograms (ECGs) yield different estimates for heartbeat intervals (HBIs), leading to differences in calculated HRV parameters. This study examines the viability of using BCG-based HRV features for sleep staging by quantifying the impact of these timing differences on the resulting parameters of interest. We introduced a range of synthetic time offsets to simulate the differences between BCG- and ECG-based heartbeat intervals, and the resulting HRV features are used to perform sleep staging. Subsequently, we draw a relationship between the mean absolute error in HBIs and the resulting sleep-staging performances. We also extend our previous work in heartbeat interval identification algorithms to demonstrate that our simulated timing jitters are close representatives of errors between heartbeat interval measurements. This work indicates that BCG-based sleep staging can produce accuracies comparable to ECG-based techniques such that at an HBI error range of up to 60 ms, the sleep-scoring error could increase from 17% to 25% based on one of the scenarios we examined. 
    more » « less